Abstract

In this Letter we report the first LDA+DMFT results (method combining Local Density Approximation with Dynamical Mean-Field Theory) for spectral properties of superconductor LaFePO. Calculated {\bf k}-resolved spectral functions reproduce recent angle-resolved photoemission spectroscopy (ARPES) data [D. H. Lu {\it et al}., Nature {\bf 455}, 81 (2008)]. Obtained effective electron mass enhancement values $m^{*}/m\approx$ 1.9 -- 2.2 are in good agreement with infrared and optical studies [M. M. Qazilbash {\it et al}., Nature Phys. {\bf 5}, 647 (2009)], de Haas--van Alphen, electrical resistivity, and electronic specific heat measurements results, that unambiguously evidence for moderate correlations strength in LaFePO. Similar values of $m^{*}/m$ were found in the other Fe-based superconductors with substantially different superconducting transition temperatures. Thus, the dynamical correlation effects are essential in the Fe-based superconductors, but the strength of electronic correlations does not determine the value of superconducting transition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.