Abstract
다채널 TV, IPTV 및 Smart TV 서비스의 등장으로 인해 수많은 방송 채널과 방대한 TV 프로그램 콘텐츠가 시청자 단말로 제공됨으로써 시청자들은 자신이 원하는 콘텐츠를 쉽게 찾고 소비하는 것이 어려운 TV 시청 환경을 맞게 되었다. 따라서 TV 사용자들에게 자신이 선호하는 콘텐츠를 자동 추천해 줌으로써 원하는 콘텐츠로의 접근성을 증대시키는 것은 미래의 지능형 TV 서비스에 있어서 주요한 이슈이다. 이에 본 논문에서는 사용자의 선호 취향과 대중의 선호취향을 모두 고려한 협업필터링 개념의 통계적 기계학습 기반 TV 프로그램 추천 모델을 제시한다. 이를 위해 시청한 TV 콘텐츠에 대한 선호 토픽을 사용자의 시청 선호도로 보고, 최근 널리 활용되고 있는 LDA(Latent Dirichlet Allocation)모델을 TV 프로그램 추천 모델에 적용하였다. LDA 기반 TV 프로그램 추천 성능을 개선하기 위해 본 논문에서는 TV시청 이용내역 데이터를 기반으로, TV 사용자들의 관심 토픽을 은닉 변수로 하고, TV 사용자들의 관심 토픽에 대한 다양성을 반영하기 위해 은닉 변수의 확률분포 특성을 비대칭 디리클레(Dirichlet) 분포로 모형화하여 실험에 적용하였다. 제안된 LDA 기반 TV 프로그램 자동 추천 방법의 성능을 검증하기 위해, 유사 시청 특성을 갖는 사용자 그룹에 대해 상위 5개의 TV 프로그램을 일주일 단위로 추천하였을 경우 평균 66.5%, 2개월 단위의 추천에 대해서는 평균 77.9%의 precision 추천 성능을 확인할 수 있었다. With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.