Abstract

Nearest neighbor (NN) classification relies on the assumption that class conditional probabilities are locally constant. This assumption becomes false in high dimensions with finite samples due to the curse of dimensionality. The NN rule introduces severe bias under these conditions. We propose a locally adaptive neighborhood morphing classification method to try to minimize bias. We use local support vector machine learning to estimate an effective metric for producing neighborhoods that are elongated along less discriminant feature dimensions and constricted along most discriminant ones. As a result, the class conditional probabilities can be expected to be approximately constant in the modified neighborhoods, whereby better classification performance can be achieved. The efficacy of our method is validated and compared against other competing techniques using a number of datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.