Abstract

Transient dynamics of two injection flows, upstream and downstream a swirl injector, are investigated. Capillary n-heptane pipe flow is measured using laser Doppler anemometer to obtain instantaneous time series of centerline velocity and to reconstruct series of instantaneous and integrated flow rates and pressure gradient. A collimated laser sheet and a high-speed video camera visualize injected spray flow. Finally, the phase Doppler anemometer measurements are introduced to analyze instantaneous patterns of droplets velocity-size and number density into fuel spray. All measurements are employed at similar temporal resolution close to 30 μs. Results indicate that both flows are strongly time-dependent and well correlated in time-phases. Initial transitions are completed by 100 μs. Opening or closing of the injector valve affects both flows as strong delta oscillation causes spray penetration dynamics and a post injection effect. A combination of intrusive laser-based techniques allows indication of the basic injection and spraying characteristics need to optimize high-pressure fuel injectors and combustion late injection mode at a high speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.