Abstract

L-cysteine conjugated molybdenum disulphide (MoS2) nanosheets have been covalently attached to a gold coated surface plasmon resonance (SPR) optical fiber to prepare a robust and stable sensor. Owing to the multifunctionality of the deposited nanosheet conjugate, the antibodies are also covalently conjugated in the subsequent step to realize the design of a SPR optical fiber biosensor for the two important bioanalytes namely, Ferritin and Immunoglobin G (IgG). The different stages of the biosensor preparation have been characterized and verified with microscopic and spectroscopic techniques. A uniform and stable deposition of the L-cysteine/MoS2 nanosheets has allowed the biosensor to be reused for multiple times. Unlike the peeling-off of the MoS2 coatings from the gold layer reported previously in the case of physically adsorbed nanomaterial, the herein adopted strategy addresses this critical concern. It has also been possible to use the single SPR fiber for both Ferritin and IgG bioassay experiments by regenerating the sensor and immobilizing two different antibodies in separate steps. For ferritin, the biosensor has delivered a linear sensor response (SPR wavelength shifts) in the concentration range of 50–400 ng/mL, while IgG has been successfully sensed from 50 to 250 µg/mL. The limit of detection for Ferritin and IgG analysis have been estimated to be 12 ng/mL and 7.2 µg/mL, respectively. The biosensors have also been verified for their specificity for the targeted molecule only. A uniform and stable deposition of the nanomaterial conjugate, reproducibility, regeneration capacity, a good sensitivity, and the specificity can be highlighted as some of key features of the L-cysteine/MoS2 optical fiber biosensor. The system can be advocated as a useful biosensor setup for the sensitive biosensing of Ferritin and IgG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call