Abstract

A multi-analyte method for the liquid chromatography-tandem mass spectrometric determination of mycotoxins in food supplements is presented. The analytes included A and B trichothecenes (nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, neosolaniol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin and T-2 toxin), aflatoxins (aflatoxin-B1, aflatoxin-B2, aflatoxin-G1 and aflatoxin-G2), Alternaria toxins (alternariol, alternariol methyl ether and altenuene), fumonisins (fumonisin-B1, fumonisin-B2 and fumonisin-B3), ochratoxin A, zearalenone, beauvericin and sterigmatocystin. Optimization of the simultaneous extraction of these toxins and the sample pretreatment procedure, as well as method validation were performed on maca (Lepidium meyenii) food supplements. The results indicated that the solvent mixture ethyl acetate/formic acid (95:5, v/v) was the best compromise for the extraction of the analytes from food supplements. Liquid–liquid partition with n-hexane was applied as partial clean-up step to remove excess of co-extracted non-polar components. Further clean-up was performed on Oasis HLB™ cartridges. Samples were analysed using an Acquity UPLC system coupled to a Micromass Quattro Micro triple quadrupole mass spectrometer equipped with an electrospray interface operated in the positive-ion mode. Limits of detection and quantification were in the range of 0.3–30 ng g−1 and 1–100 ng g−1, respectively. Recovery yields were above 60% for most of the analytes, except for nivalenol, sterigmatocystine and the fumonisins. The method showed good precision and trueness. Analysis of different food supplements such as soy (Glycine max) isoflavones, St John's wort ( Hypericum perforatum), garlic (Allium sativum), Ginkgo biloba, and black radish (Raphanus niger) demonstrated the general applicability of the method. Due to different matrix effects observed in different food supplement samples, the standard addition approach was applied to perform correct quantitative analysis. In 56 out of 62 samples analysed, none of the 23 mycotoxins investigated was detected. Positive samples contained at least one of the toxins fumonisin-B1, fumonisin-B2, fumonisin-B3 and ochratoxin A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.