Abstract

The bioanalysis of plasma samples generated from in vivo studies of therapeutic proteins is of increasing interesting in the biopharmaceutical industry. The conventional ELISA approach has a long assay development time which can limit use in the early discovery and development of protein-based drugs. In this study, an LC-MS/MS bioassay was developed for the quantification of somatropin and a therapeutic human monoclonal antibody. The assay used bovine fetuin as an internal standard and a two-dimensional solid-phase extraction for the cleanup of the plasma digest. Sample extracts were resolved on an analytical size column using a 6 min LC gradient and analyzed using a triple-quadruple mass spectrometer. The linearity of the assay for somatropin was established from 1 to 1000 microg/mL with accuracy and precision within 15%. This LC-MS approach was also applied to a rat pharmacokinetic study of the therapeutic monoclonal antibody with a lower quantitation limit of 0.5 microg/mL. The LC-MS assay had improved accuracy and precision, and the results from analysis of in vivo study samples showed good agreement with the data obtained with an ELISA. The results from this study indicate that the LC-MS bioassay is a simple and feasible approach for the bioanalysis of therapeutic proteins to support in vivo studies during early drug discovery and development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.