Abstract

Abstract Identification of dyes in historic textiles was until recently only based on reversed phase liquid chromatography and diode-array detection (RPLC–DAD). Although in the last years mass spectrometry (MS) is increasingly used as a detection system for liquid chromatography, most applications in the field are directed to identification of the molecular ions or in studies dedicated to degradation products which may be used as markers in RPLC–DAD. In the present work, an analytical protocol for the identification of dyes using RPLC/ESI/MS is presented. Atmospheric pressure electrospray ionization (ESI) was applied, in the negative ion monitoring mode. Both single stage and tandem MS (MS/MS) approaches were considered. An ion trap was used as mass analyzer. Experiments are based on the characterization of standards (natural dyes and/or dyed fibers) with the mass spectrometer sequentially working in the following modes: single MS/full scan, followed by plotting chromatograms through ion extraction (IEC) according to mass/charge ratios corresponding to molecular ions; single MS/selected ion monitoring (SIM) mode; tandem MS/single reaction monitoring (SRM) mode; tandem MS/multiple reactions monitoring (MRM) or product ion scanning modes. A faster chromatographic separation could be applied as MS detection readily balanced the selectivity of the analytical process. In a case study, 11 dyes from 3 biological sources were detected in a 0.5 mg historic sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.