Abstract

Stromal cell-derived factor 1alpha (CXCL12) induces chemotaxis of lymphocytes through its receptor CXCR4. We examined the role of nonreceptor tyrosine kinases in CXCL12-induced chemotaxis of T cells and natural killer (NK) cells. Damnacanthal, a specific Lck inhibitor, but not the Syk inhibitor piceatannol, inhibited CXCL12-induced chemotaxis of both lymphocyte subsets. Similarly, damnacanthal was shown to inhibit CXCL12-induced chemotaxis of the Jurkat T-cell line. Stimulating T and NK cells with CXCL12 increased both the tyrosine phosphorylation and the kinase activity of Lck. A direct involvement of Lck in CXCL12-induced chemotaxis was demonstrated in the Lck-deficient Jurkat-derived cell line JCaM1.6. Although JCaM1.6 cells express CXCR4, no significant migration was detected after CXCL12 stimulation. Reconstitution with wild-type Lck restored both CXCL12-induced chemotaxis and Lck activation. Furthermore, cotransfection of wild-type Lck with C-terminal Src kinase (Csk) into JCaM1.6 failed to restore the chemotactic response induced by CXCL12. Finally, by targeting critical residues in the Src homology-2 (SH2) or SH3 domains of Lck, we observed that the SH3 domain is important for the function of Lck in CXCL12-mediated chemotaxis. Together, these results suggest a role for Lck in CXCL12-induced signaling pathways leading to lymphocyte chemotaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.