Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease caused by the death of the neurons regulating the voluntary muscles which leads to the progressive paralysis. We investigated the difference of transport function of L-citrulline in ALS disease model (NSC-34/hSOD1G93A, MT) and a control model (NSC-34/hSOD1wt, WT). The [14C]L-citrulline uptake was significantly reduced in MT cells as compared with that of control. The Michaelis-Menten constant (Km) for MT cells was 0.67 ± 0.05mM, whereas it was 1.48 ± 0.21mM for control. On the other hand, the Vmax values for MT and control were 10.9 ± 0.8nmol/mg protein/min and 18.3 ± 2.9nmol/mg protein/min, respectively. The Km and Vmax values showed the high affinity and low capacity for MT as compared with control. Moreover, the uptake of [14C]L-citrulline was significantly inhibited by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) and harmaline which is the inhibitor of the large neutral amino acid transporter1 (LAT1) in NSC-34 cell lines. Furthermore, [14C]L-citrulline uptakes took place in Na+-independent manner. It was also inhibited by the neutral amino acids such as citrulline and phenylalanine. Likewise, L-dopa, gabapentin, and riluzole significantly inhibited the [14C]L-citrulline uptake. It shows the competitive inhibition for L-dopa in ALS cell lines. On the other hand, [14C]L-citrulline uptake in the presence of riluzole showed competitive inhibition in WT cells, whereas it was uncompetitive for MT cells. The small interfering RNA experiments showed that LAT1 is involved in the [14C]L-citrulline uptake in NSC-34 cell lines. On the other hand, in the examination of the alteration in the expression level of LAT1, it was significantly lower in MT cells as compared with that of control. Similarly, in the spinal cord of ALS, transgenic mice revealed a slight but significant decrease in LAT1 immunoreactivity in motor neurons of ALS mice compared with control. However, the LAT1 immunoreactivity in non-motor neurons and in astrocytes was relatively increased in the spinal cord gray matter of ALS mice. The experimental evidences of our results suggest that the change of transport activity of [14C]L-citrulline may be partially responsible for the pathological alteration in ALS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.