Abstract
Sustainable development, one of the main challenges of our time, is a policy focused on the perfect balance between three fundamental pillars: environmental, economic and social sustainability. As regards the environmental protection, the Life Cycle Assessment (LCA) methodology allows to evaluate the sustainability profile of the overall Life-Cycle (LC) of products, processes and services, based on an inventory (in terms of materials/energy consumption and emissions/waste production) referred to all LC stages. The paper describes an application of LCA in the maritime transportation field, after a careful analysis of the state of the art. In particular, the case study consists in the environmental comparison of two alternative design solutions for the superstructure of a Azimut-Benetti yacht, designed by Corporate R&D department and manufactured in one of Benetti botyards. The competing construction options are a Glass Fiber reinforced Vinylester-isophthalic Resin (GFVR) and a Carbon Fiber reinforced Epoxy Resin (CFER) component, and they are assessed in terms of Global Warming Potential through the CML2001 Life Cyle Impact Assessment (LCIA) method. The study takes into account the entire LC of the superstructure component, divided into production (including raw materials, manufacturing and transportations), use (including both fuel consumption and exhaust air emissions) and End-of-Life (EoL). The Life Cycle Inventory (LCI) is mainly based on primary data (materials and energy consumption for manufacturing) directly provided by the construction company; missing data are retrieved from secondary sources (literature and LCI database provided by the GaBi6 environmental software). Results show that, despite the higher impact in production stage, the innovative solution allows achieving a significant quota of GWP over the entire LC (more than 16%), which is mainly associated with decreased amount of fuel needed and lowered CO2 exhaust emissions during operation. The sensitivity analysis reveals that the environmental advantage provided by the CFER design becomes bigger as both component life-time and yacht consumption increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.