Abstract

Plants produce a great number of metabolites with potentially useful biological activities. Species from the genus Globularia (Plantaginaceae) are known as sources of different phenolic and iridoid compounds. Globularia alypum L. is a medicinal plant used as a healing agent in many Mediterranean countries. Similarities in phytochemical composition are often observed for related species. For Globularia spp., such findings were mostly based on identification of several isolated compounds from distinct species. To our knowledge, this is the first study that enables simultaneous comparison of phytochemical profiles from several members of the genus Globularia. Liquid chromatography-photodiode array detection-electrospray ionization-tandem mass spectrometry was used for the analysis of methanolic extracts of aerial parts obtained from four Globularia species (G. alypum, G. punctata, G. cordifolia and G. meridionalis). In total, 85 compounds were identified or tentatively identified based on comparison of their retention time, UV and MSn (up to MS4 ) spectra to those of standard compounds and/or to literature data. Among these, high relative amounts of bioactive molecules such as globularin, globularifolin, asperuloside and verbascoside (acteoside) were found. Apart from providing new insights into the phytochemistry and chemotaxonomy of selected Globularia species, results of this study complement existing MS/MS spectral data and could enable easier mass spectrometric profiling of certain bioactive compounds such as iridoids and phenylethanoids in related plant species, genera and families. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.