Abstract
Therapeutic drug monitoring (TDM) of atypical antipsychotics is common, but published methods often specify relatively complex sample preparation and analysis procedures. The aim of this work was to develop and validate a simple liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for the analysis of amisulpride, aripiprazole and dehydroaripiprazole, clozapine and norclozapine, olanzapine, quetiapine, risperidone and 9-hydroxyrisperidone, and sulpiride in small (200μL) volumes of plasma or serum for TDM purposes. The applicability of the method as developed to haemolysed whole blood and to oral fluid was also investigated.Analytes and internal standards were extracted into butyl acetate:butanol (9+1, v/v) and a portion of the extract analysed by LC–MS/MS (100mm×2.1mm i.d. Waters Spherisorb S5SCX; eluent: 50mmol/L methanolic ammonium acetate, pH* 6.0; flow-rate 0.5mL/min; positive ion APCI-SRM, two transitions per analyte). Assay calibration (human plasma, oral fluid, and haemolysed whole blood calibration solutions) was performed by plotting the ratio of the peak area of the analyte to that of the appropriate internal standard. Assay validation was as per FDA guidelines.Assay calibration was linear across the concentration ranges studied. Inter- and intra-assay precision and accuracy were within 10% for all analytes in human plasma. Similar results were obtained for oral fluid and haemolysed whole blood, except that aripiprazole and dehydroaripiprazole were within 15% accuracy at low concentration (15μg/L) in oral fluid, and olanzapine inter-assay precision could not be assessed in these matrices due to day-by-day degradation of this analyte. Recoveries varied between 16% (sulpiride) and 107% (clozapine), and were reproducible as well as comparable between human plasma, human serum, calf serum and haemolysed whole blood. For oral fluid, recoveries were reproducible, but differed slightly from those in plasma suggesting the need for calibration solutions to be prepared in this medium if oral fluid is to be analysed. LLOQs were 1–5μg/L depending on the analyte. Neither ion suppression/enhancement, nor interference from some known metabolites of the antipsychotics studied has been encountered. The method has also been applied to the analysis of blood samples collected post-mortem after dilution (1+1, 1+3; v/v) in analyte-free calf serum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.