Abstract

Due to the high prevalence of cannabinoids in forensic toxicology analysis, it is crucial to have an efficient method that allows the use of a small sample amount and that requires a minimal sample preparation, for the determination and quantification of low concentrations. A simple, highly selective and high throughput liquid chromatography tandem mass spectrometry methodology (LC-MS/MS-MS3) was developed for the determination and quantification of ∆9-tetrahydrocannabinol (THC), 11-hydroxy-∆9- tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH), in blood samples. Chromatographic analysis of THC, THC-OH, and THC-COOH and their deuterated internal standards was preceded by protein precipitation (PPT) of 0.1 mL of blood samples with acetonitrile. Chromatographic separation was achieved by use of an Acquity UPLC® HHS T3 (100 mm x 2.1mm i.d., 1.8 μm) reversed-phase column, using a gradient elution of 2 mM aqueous ammonium formate, 0.1% formic acid, and methanol at a flow rate of 0.4 mL/min, with a run time of 10 minutes. For the MS/MS-MS3 analysis, a SCIEX QTRAP® 6500+ triple quadrupole linear ion trap mass spectrometer was used via electrospray ionization (ESI), operated in multiple reaction monitoring (MRM) and linear ion trap mode (MS3). The method was validated in accordance with internationally accepted criteria and guidelines, and proved to be selective and linear between 0.5-100 ng/mL (r2>0.995). The lower limits of quantification (LLOQ) corresponded to the lowest concentrations used for the calibration curves. The coefficients of variation obtained for accuracy and precision were <15%. The mean recoveries were between 88.0-117.2%, for the studied concentration levels (1 ng/mL, 5 ng/mL and 50 ng/mL). No significant interfering compounds, matrix effects or carryover were observed. The validated method provides a sensitive, efficient and robust procedure for the quantification of cannabinoids in blood, using LC-MS/MS-MS3 and a sample volume of 0.1 mL. This work is also a proof of concept for using LC-MS3 technique to determine drugs in biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.