Abstract
Increasing evidence has shown that abnormal metabolic phenotypes in body fluids reflect the pathogenesis and pathophysiology of Parkinson's disease (PD). These body fluids include urine; however, the relationship between, specifically, urinary metabolic phenotypes and PD is not fully understood. In this study, urinary metabolites from a total of 401 clinical urine samples collected from 106 idiopathic PD patients and 104 normal control subjects were profiled by using high-performance liquid chromatography coupled to high-resolution mass spectrometry. Our study revealed significant correlation between clinical phenotype and urinary metabolite profile. Metabolic profiles of idiopathic PD patients differed significantly and consistently from normal controls, with related metabolic pathway variations observed in steroidogenesis, fatty acid beta-oxidation, histidine metabolism, phenylalanine metabolism, tryptophan metabolism, nucleotide metabolism, and tyrosine metabolism. In the fruit fly Drosophila melanogaster, the alteration of the kynurenine pathway in tryptophan metabolism corresponded with pathogenic changes in the alpha-synuclein overexpressed Drosophila model of PD. The results suggest that LC-MS-based urinary metabolomic profiling can reveal the metabolite signatures and related variations in metabolic pathways that characterize PD. Consistent PD-related changes across species may provide the basis for understanding metabolic regulation of PD at the molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.