Abstract

The application of metabolomics to the study of plants is growing because of the current development of analytical techniques. The most commonly used analytical technology driving plant metabolomics studies is Mass Spectrometry (MS) coupled to liquid chromatography (LC). In recent years, Nuclear Magnetic Resonance (NMR) spectroscopy, not requiring a previous chromatographic separation, has been receiving growing attention for metabolite fingerprinting of natural extracts. Herein, an integrated LC-MS and 1H NMR metabolomic approach provided a comprehensive phytochemical characterization of Symphytum anatolicum whole plant, taking into account both primary and specialized metabolites. Moreover, the NMR analyses provided direct quantitative information. Species belonging to the Symphytum genus, known as comfrey, have shown several biological activities including anti-inflammatory, analgesic, hepatoprotective, antifungal, and antibacterial. The LC-MS profile showed the presence of 21 main specialized metabolites, belonging to the classes of flavonoids, phenylpropanoids, salvianols, and oxylipins. The 1H NMR spectrum revealed the occurrence of metabolites including organic acids, phenolics, flavonoids, sugars, and amino acids. A quantitative analysis of these metabolites was performed and their concentration was obtained with respect to the known concentration of TSP, by means of the software package Chenomx which allows quantification of individual components in the NMR spectra. Furthermore, the phenolic content, antioxidant activity, glucosidase, and tyrosinase inhibitory activity of S. anatolicum extract were evaluated. The resulting bioactivity profile suggests how S. anatolicum represents a source of metabolites with health-promoting activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.