Abstract

BackgroundUnderstanding the diversity, breadth, magnitude, and functional profile of the T cell response against SARS-CoV-2 in recovered COVID-19 individuals is critical to evaluate the contribution of T cells to produce a potentially protective immune response.MethodsWe used a multiplexed peptide-MHC tetramer approach to screen a total of 408 SARS-CoV-2 candidate peptide epitopes for CD8+ T cell recognition in a cohort of 30 individuals recovered from COVID-19. The peptides spanned the whole viral genome and were restricted to six prevalent HLA alleles; T cells were simultaneously characterized by a 28-marker phenotypic panel. The evolution of the SARS-CoV-2 T cell responses was then statistically modeled against time from diagnosis, and in relation to humoral and inflammatory response.Workflow for Study. A multiplexed peptide-MHC tetramer approach was used to screen SARS-CoV-2 candidate peptide epitopes in a cohort of 30 COVID-19 recovered patients across 6 prevalent HLA alleles, and T cells profiled with a 28-marker phenotypic panel. Multiplex tetramer screen. One representative COVID-19 recovered patient and one healthy donor were screened for HLA- relevant SARS-CoV-2 epitopes, as well as epitopes for CMV, EBV, Influenza, Adenovirus and MART-1. Shown are the frequencies of tetramer-positive CD8 T cells from 2 technical replicates per subject. ResultsAlmost all individuals screened showed a T cell response against SARS-CoV-2 (29/30): 132 SARS-CoV-2-specific CD8+ T cells hits were detected, corresponding to 52 unique reactive epitopes. Twelve of the 52 unique SARS-CoV-2-specific epitopes were recognized by more than 40% of the individuals screened, indicating high prevalence in the subjects. Importantly, these CD8+ T cell responses were directed against both structural and non-structural viral proteins, with the highest magnitude against nucleocapsid derived peptides, but without any antigen-driven bias in the phenotype of specific T cells. Overall, SARS-CoV-2 T cells showed specific states of differentiation (stem-cell memory and transitional memory), which differed from those of MART-1, influenza, CMV and EBV-specific T cells.UMAP visualization revealed a phenotypic profile of SARS-CoV-2-specific CD8 T cells in COVID-19 convalescent donors that is distinct from other viral specificities, such as influenza, CMV, EBV and Adenovirus. SARS-CoV-2 epitope screening revealed CD8+ T cell responses directed against both structural and non-structural viral proteins, with the highest magnitude response against nucleocapsid derived peptides ConclusionThe kinetics modeling demonstrates a dynamic, evolving immune response characterized by a time-dependent decrease in overall inflammation, increase in neutralizing antibody titer, and progressive differentiation of a broad SARS-CoV-2 CD8 T cell response. It could be desirable to aim at recapitulating the hallmarks of this robust CD8 T cell response in the design of protective COVID-19 vaccines.Disclosures Hassen Kared, PhD, ImmunoScape (Shareholder) Alessandra Nardin, DvM, ImmunoScape (Shareholder) Hermi Sumatoh, BSc, Dip MTech, ImmunoScape (Shareholder) Faris Kairi, BSc, ImmunoScape (Shareholder) Daniel Carbajo, PhD, ImmunoScape (Shareholder) Brian Abel, PhD, MBA, ImmunoScape (Shareholder) Evan Newell, PhD, ImmunoScape (Shareholder)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.