Abstract
Starch biosynthesis in gravity-sensing tissues of rice shoot determines the magnitude of rice shoot gravitropism and thus tiller angle. However, the molecular mechanism underlying starch biosynthesis in rice gravity-sensing tissues is still unclear. We characterized a novel tiller angle gene LAZY3 (LA3) in rice through map-based cloning. Biochemical, molecular and genetic studies further demonstrated the essential roles of LA3 in gravity perception of rice shoot and tiller angle control. The shoot gravitropism and lateral auxin transport were defective in la3 mutant upon gravistimulation. We showed that LA3 encodes a chloroplast-localized tryptophan-rich protein associated with starch granules via Tryptophan-rich region (TRR) domain. Moreover, LA3 could interact with the starch biosynthesis regulator LA2, determining starch granule formation in shoot gravity-sensing tissues. LA3 and LA2 negatively regulate tiller angle in the same pathway acting upstream of LA1 to mediate asymmetric distribution of auxin. Our study defined LA3 as an indispensable factor of starch biosynthesis in rice gravity-sensing tissues that greatly broadens current understanding in the molecular mechanisms underlying the starch granule formation in gravity-sensing tissues, and provides new insights into the regulatory mechanism of shoot gravitropism and rice tiller angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.