Abstract
The connection between apparent density-type bone remodeling theories and density formulations of topology optimization is well known from a large number of publications and its theoretical basis has recently been discussed by making use of a dynamical systems approach to optimization. The present paper takes this connection one step further by showing how the Coleman–Noll procedure of rational thermodynamics can be used to derive general dynamical systems, where a special case includes the lazy zone concept of bone remodeling theory. It is also shown how a numerical solution method for the dynamical system can be developed by using the sequential convex approximation idea. The method is employed to obtain a series of solutions that show the influence of modeling parameters representing elements of plasticity and viscosity in the growth process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.