Abstract

AbstractNested data-parallelism (NDP) is a language mechanism that supports programming irregular parallel applications in a declarative style. In this paper, we describe the implementation of NDP in Parallel ML (PML), which is a part of the Manticore system. One of the main challenges of implementing NDP is managing the parallel decomposition of work. If we have too many small chunks of work, the overhead will be too high, but if we do not have enough chunks of work, processors will be idle. Recently, the technique of Lazy Binary Splitting was proposed to address this problem for nested parallel loops over flat arrays. We have adapted this technique to our implementation of NDP, which uses binary trees to represent parallel arrays. This new technique, which we callLazy Tree Splitting(LTS), has the key advantage ofperformance robustness, i.e., it does not require tuning to get the best performance for each program. We describe the implementation of the standard NDP operations using LTS and present experimental data that demonstrate the scalability of LTS across a range of benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.