Abstract

Abstract In this paper, we present an abstraction-based approach to robust safety controller synthesis for continuous-time nonlinear systems. To reduce the computational complexity associated with symbolic control approaches, we develop a lazy controller synthesis algorithm, which iteratively explores states on the boundary of controllable domain while avoiding exploration of internal states, supposing that they are safely controllable a priory. A closed-loop safety controller for the original problem is then defined as follows: we use the abstract controller to push the system from a boundary state back towards the interior, while for inner states, any admissible input is valid. We then compare the proposed approach with the classical safety synthesis algorithm and illustrate the advantages, in terms of run-time and memory efficiency, on an adaptive cruise control problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.