Abstract

AbstractA new mesh generation algorithm called ‘LayTracks’, to automatically generate an all quad mesh that is adapted to the variation of geometric feature size in the domain is described. LayTracks combines the merits of two popular direct techniques for quadrilateral mesh generation—quad meshing by decomposition and advancing front quad meshing. While the MAT has been used for the domain decomposition before, this is the first attempt to use the MAT, for the robust subdivision of a complex domain into a well defined sub‐domain called ‘Tracks’, for terminating the advancing front of the mesh elements without complex interference checks and to use radius function for providing sizing function for adaptive meshing. The process of subdivision of a domain is analogous to, formation of railway tracks by laying rails on the ground. Each rail starts from a node on the boundary and propagates towards the medial axis (MA) and then from the MA towards the boundary. Quadrilateral elements are then obtained by placing nodes on these rails and connecting them inside each track, formed by adjacent rails. The algorithm has been implemented and tested on some typical geometries and the quality of the output mesh obtained are presented. Extension of this technique to all hexahedral meshing is discussed. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call