Abstract

One technique to prevent attacks from an untrusted foundry is split manufacturing, where only a part of the layout is sent to the untrusted high-end foundry, and the rest is manufactured at a trusted low-end foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. For instance, Boolean satisfiability (SAT) based bijective mapping attack is mentioned without detailed research. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We provide the first systematic study, to the best of our knowledge, on attack techniques in this scenario. Besides of implementing SAT-based bijective mapping attack, we develop a new attack technique based on structural pattern matching. Experimental comparison with bijective mapping attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.