Abstract

PurposeIn an industrial robotic cell, the optimal layout planning problem needs critical analysis, as it indirectly affects the manufacturing time and cost involved in the production process. This paper aims to propose a generic three-step robotic cell layout planning method and aims to enhance the adaptability of robotic manufacturing cell in small-scale industries.Design/methodology/approachThe method uses the data generated from the point cloud modeling and simulation of the objects (machines and robot) to optimize their positions and orientations in the cell. The simulated annealing algorithm has been used to solve the optimization problem with minimum joint displacement criterion. This approach is critically analyzed and discussed against the data collected from an industrial robotic cell in a foundry shop of a pipe manufacturing industry.FindingsMore than 50 per cent reduction in the net joint movement of the robot has been achieved. Immediate feedback of the results by a three-dimensional view of the optimal cell layout without using any commercial robotic simulation package.Originality/valueThe layout optimization of an industrial robotic cell based on the point cloud modeling of its objects is the novelty of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.