Abstract

In greenhouse management, maintaining optimal humidity is essential for promoting plant growth, including photosynthesis, and preventing diseases and pests. Addressing spatial variability requires sensor-based monitoring for informed decisions on humidification systems, particularly for small, and suspension-type dehumidifiers. This study aims to assess the impact of various layouts of small-sized suspension-type dehumidifiers on vertical, spatial, and temporal humidity variability, along with energy consumption in a greenhouse. During experiments in a 648 m³ (18 m × 6 m × 6 m) plastic greenhouse, dehumidifiers were placed at four different layouts: one at the center (Layout 1), one on each side (Layout 2), two units at the center facing opposite directions (Layout 3), and two units on one side facing the center (Layout 4). Temperature and humidity (TH) sensors were connected to a microcontroller, facilitating wireless data acquisition, storage, and remote monitoring. The actuator was controlled through a relay module, and current sensors monitored power consumption. Spatial interpolation and mapping were employed using mapping software. These layouts reduced humidity from 89.30% to 51.10%, with Layout 2 displaying the most consistent humidity distribution. Water removal efficiency varied among layouts, with Layout 2 exhibiting the highest (61.15 L) and overall performance of 50%, while Layouts 1, 3, and 4 exhibited lower efficiencies of 40%, 44%, and 49%, respectively. Power consumption ranged from 0.506 to 0.528 kW for the dehumidifier and 0.242 to 0.264 kW for the fan. The findings highlighted that positioning the dehumidifier on both sides, facing towards the center (Layout 2), resulted in the most uniform humidity control within the greenhouse. The optimal layout of small suspension-type dehumidifiers in greenhouses would significantly improve humidity control, promoting plant growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.