Abstract

In this paper, the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated. A design method based on the multi-material topology optimization is proposed for the simultaneous layout optimization of the lattices and stiffeners in thin-walled structures. First, the representative lattice units of the selected lattices are equivalent to the virtual homogeneous materials whose effective elastic matrixes are achieved by the energy-based homogenization method. Meanwhile, the stiffeners are modelled using the solid material. Subsequently, the multi-material topology optimization formulation is established for both the virtual homogeneous materials and solid material to minimize the structural compliance under mass constraint. Thus, the optimal layout of both the lattices and stiffeners could be simultaneously attained by the optimization procedure. Two applications, the aircraft panel structure and the equipment mounting plate, are dealt with to demonstrate the detailed design procedure and reveal the effect of the proposed method. According to numerical comparisons and experimental results, the thin-walled structures with lattices and stiffeners have significant advantages over the traditional stiffened thin-walled structures and lattice sandwich structures in terms of static, dynamic and anti-instability performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call