Abstract
Despite the impressive success of deep learning techniques in various types of classification and prediction tasks, interpreting these models and explaining their predictions are still major challenges. In this article, we present an easy-to-use command line tool capable of visualizing and analyzing alternative representations of biological observations learned by deep learning models. This new tool, namely, layerUMAP, integrates autoBioSeqpy software and the UMAP library to address learned high-level representations. An important advantage of the tool is that it provides an interactive option that enables users to visualize the outputs of hidden layers along the depth of the model. We use two different classes of examples to illustrate the potential power of layerUMAP, and the results demonstrate that layerUMAP can provide insightful visual feedback about models and further guide us to develop better models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.