Abstract

This paper presents the results related to the investigation of layers of nanocrystalline silicon carbide (nc-SiC) obtained by direct ion deposition for the purpose of hydrogen accumulation. The parameters of the production process providing the largest amount of accumulated hydrogen (more than 5.5 wt.%) were determined based on the mass spectrometric data on the desorption of atomic and molecular hydrogen from nc-SiC films. Electron microscopic examination revealed the structural features that are responsible for absorption, retention, and desorption of hydrogen at relatively low temperatures and pressures. The study results suggest that the main structural elements acting as the hydrogen traps are the vacant positions of carbon in nc-SiC. The presence of a developed system of intercrystalline boundaries in investigated films promotes the hydrogen desorption at relatively low temperatures.

Highlights

  • Over the past decades, an ever-increasing demand for sources of energy alternative to charcoal, oil, and gas has been observing

  • The main challenge hampering progress in the field of development and usage of electrical installations running on hydrogen fuel is the lack of solid materials that can accumulate the hydrogen in large amounts (>5.4 wt.%) and release it at relatively low (

  • We studied the possibility of using the nanocrystalline silicon carbide layers for adsorption and desorption of hydrogen

Read more

Summary

Introduction

An ever-increasing demand for sources of energy alternative to charcoal, oil, and gas has been observing. One of the most accessible and energetically favorable sources can be hydrogen. The main challenge hampering progress in the field of development and usage of electrical installations running on hydrogen fuel is the lack of solid materials that can accumulate the hydrogen in large amounts (>5.4 wt.%) and release it at relatively low (50 kJ/mole) prevents its release from the lattice at the temperatures below 573 K [3, 4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call