Abstract

We study interlayer transport of multilayer graphenes in a magnetic field with various stacking structures (AB, ABC, and AA types) by calculating the Hall and longitudinal conductivities as functions of the Fermi energy. Their behavior depends strongly on the stacking structures and selection of the layers. The Hall conductivity between different layers is no longer quantized. Moreover, for AB stacking, the interlayer conductivity vanishes around zero energy with increasing layer separation, and shows negative values in particular cases. The fact that longitudinal interlayer conductivity is suppressed by a magnetic field indicates that this system can be applied as a switching device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.