Abstract

Layered heterometallic 5f-3d uranyl phosphonates can exhibit unique luminescent and/or magnetic properties, but the fabrication and properties of their 2D counterparts have not been investigated. Herein we report three heterobimetallic uranyl phosphonates, namely, [(UO2 )3 M(2-pmbH)4 (H2 O)4 ] ⋅ 2H2 O [MU, M=Co(II), CoU; Mn(II), MnU; Zn(II), ZnU; 2-pmbH3 =2-(phosphonomethyl)benzoic acid]. They are isostructural and display two-dimensional layered structures where the M(II) centers are encapsulated inside the windows generated by the diamagnetic uranyl phosphonate layer. Each M(II) has an octahedral geometry filled with four water molecules in the equatorial positions and two phosphonate oxygen atoms in the axial positions. The uranium atoms adopt UO7 pentagonal bipyramidal and UO6 square bipyramidal geometries. The lattice and coordination water molecules can be released by thermal treatment and reabsorbed in a reversible manner, accompanied with changes of magnetic dynamics. Interestingly, the bulk samples of MU can be exfoliated in acetone via freezing and thawing processes forming nanosheets with single-layer or two-layer thickness (MU-ns). Magnetic studies revealed that the CoU and MnU systems exhibited field-induced slow magnetization relaxation at low temperature. Compared with crystalline CoU, the magnetic relaxation of the CoU-ns aggregates is significantly accelerated. Moreover, photoluminescence measured at 77 K showed slight red-shift of the five characteristic uranyl emission bands for ZnU-ns in comparison with those of the crystalline ZnU. This work gives the first examples of 2D materials based on 5f-3d heterometallic uranyl phosphonates and illustrates the impact of dimension reduction on their magnetic/optical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call