Abstract

We consider the Ising model on $\mathbb Z\times \mathbb Z$ where on each horizontal line $\{(x,i), x\in \mathbb Z\}$, the interaction is given by a ferromagnetic Kac potential with coupling strength $J_\gamma(x,y)\sim \gamma J(\gamma (x-y))$ at the mean field critical temperature. We then add a nearest neighbor ferromagnetic vertical interaction of strength $\epsilon$ and prove that for every $\epsilon >0$ the systems exhibits phase transition provided $\gamma>0$ is small enough.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.