Abstract
We estimate crustal and uppermost mantle shear velocity structure beneath 30 stations in North America by jointly inverting the high frequency scattered wavefield observed in the P wave coda, together with long period surface wave phase and group dispersion data. Several features distinguish our approach from previous such joint inversions. 1) We apply a cross-convolution method, rather than more standard deconvolution approaches used in receiver function studies, and consider both Love and Rayleigh wave dispersion, allowing us to infer profiles of radial anisotropy. 2) We generate probabilistic 1D radially anisotropic depth profiles across the whole uppermost mantle, down to ∼350 km depth. 3) The inverse problem is cast in a trans-dimensional Bayesian formalism, where the number of isotropic and anisotropic layers is treated as unknown, allowing us to obtain models described with the least number of parameters. Results show that the tectonically active region west of the Rocky Mountain Front is marked by a Lithospheric Asthenosphere Boundary and a Lehmann Discontinuity occurring at relatively shallow depths (60–150 km and 100–200 km, respectively), whereas further east, in the stable craton, these discontinuities are deeper (170–200 km and 200–250 km, respectively). In addition, in the stable part of the continent, at least two Mid-Lithospheric Discontinuities are present at intermediate depths, suggesting the existence of strong lithospheric layering, and a mechanism for lithospheric thickening by underplating of additional layers as cratonic age increases. The Moho across the continent as well as mid-crustal discontinuities in the craton are also imaged, in agreement with independent studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.