Abstract

Freedom from deadlock is a key issue in cut-through, wormhole, and store and forward networks, and such freedom is usually obtained through careful design of the routing algorithm. Most existing deadlock-free routing methods for irregular topologies do, however, impose severe limitations on the available routing paths. We present a method called layered routing, which gives rise to a series of routing algorithms, some of which perform considerably better than previous ones. Our method groups virtual channels into network layers and to each layer it assigns a limited set of source/destination address pairs. This separation of traffic yields a significant increase in routing efficiency. We show how the method can be used to improve the performance of irregular networks, both through load balancing and by guaranteeing shortest-path routing. The method is simple to implement, and its application does not require any features in the switches other than the existence of a modest number of virtual channels. The performance of the approach is evaluated through extensive experiments within three classes of technologies. These experiments reveal a need for virtual channels as well as an improvement in throughput for each technology class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.