Abstract

Two-dimensional (2D) nanosheets are a class of fascinating host material that demonstrates a high specific surface area for the immobilization of functional molecules. Herein, we describe a layered photochromic film using montmorillonite 2D nanosheets immobilized with spiropyran units, which demonstrates a remarkable and reversible photochromic behavior. The synthesis of the layered photochromic film includes the intercalation and exfoliation of montmorillonite powders into 2D nanosheets using a spiropyran-modified surfactant and a subsequent vacuum filtration. The photochromic units of spiropyran-modified quaternary ammonium groups are immobilized on the surface of montmorillonite 2D nanosheets through an electrostatic interaction after exchanging with the native cations in montmorillonite during the intercalation and exfoliation. The photoisomerization of the spiropyran units between closed-ring spiropyran and open-ring merocyanine upon visible/UV irradiation contributes to the photochromic behavior of the layered film. The color contrast between the coloration and decoloration states of photochromic film is optimized by increasing the amount of spiropyran-modified cationic surfactant during the intercalation and exfoliation process. Our layered films with a visual photochromic behavior may promote their applications for optical data storage, optical switching and chemical sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.