Abstract

AbstractMXene‐transition metal dichalcogenide (TMD) heterostructures are synthesized through a one‐step heat treatment of Nb2C and Nb4C3. These MXenes are used without delamination or any pre‐treatment. Heat treatments accomplish the sacrificial transformation of these MXenes into TMD (NbS2) at 700 and 900 °C under H2S. This work investigates, for the first time, the role of starting MXene phase in the derivative morphology. It is shown that while treatment of Nb2C at 700 °C leads to the formation of pillar‐like structures on the parent MXene, Nb4C3 produces nano‐mosaic layered NbS2. At 900 °C, both MXene phases, of the same transition metal, fully convert into nano‐mosaic layered NbS2 preserving the parent MXene's layered morphology. When tested as electrodes for hydrogen evolution reaction, Nb4C3‐derived hybrids show better performance than Nb2C derivatives. The Nb4C3‐derived heterostructure exhibits a low overpotential of 198 mV at 10 mA cm−2 and a Tafel slope of 122 mV dec−1, with good cycling stability in an acidic electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.