Abstract
AbstractAnti‐cancer drug daunorubicin (DNR) was encapsulated in preformed multilayer microcapsules and was applied in tumor treatment by in vitro cell culture and in vivo animal experiments. The microcapsules were fabricated by an alternate deposition of oppositely charged polysaccharides, i.e. chitosan and alginate onto carboxymethyl cellulose (CMC) doped CaCO3 colloidal particles in a sequential assembly procedure, followed by crosslinking of the capsule shells with glutaraldehyde (GA) and removal of the templates by disodium ethylenediaminetetraacetic acid (EDTA). The as‐prepared microcapsules showed strong ability to induce the positively charged DNR to deposit into the microcapsule interiors. Confocal microscopy and transmission electron microscopy observed homogeneous distribution of the drug within microcapsules. The loaded DNR could be released again, following a diffusion‐controlled model at the initial stage. In vitro experiments demonstrated that the encapsulated DNR can effectively induce the apoptosis of BEL‐7402 tumor cells, as evidenced by various microscopy techniques after acridine orange (AO), Hoechst 33342, and osmium tetraoxide staining. By seeding the BEL‐7402 hepatoma cells into BALB/c/nu mice, tumors were created for the animal experiments. The results showed that the encapsulated DNR had better efficacy than that of the free drug in terms of tumor inhibition in a 4 week in vivo culture period. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.