Abstract
This paper presents the theoretical basis of layered Markov models (LMM), which integrate all the knowledge levels commonly used in automatic speech recognition (acoustic, lexical and language levels) in a single model. Each knowledge level is represented by a set of Markov models (or even hidden Markov models) and all these sets are arranged in a layered structure. Given that common supervised training and recognition paradigms can be also expressed as simple Markov models, they can be formalized and integrated into the model as an extra knowledge layer. In addition, it is shown that hidden Markov models (HMM) and newer HMM2 can be considered as particular instances of LMM
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.