Abstract

We continue the line of research on graph compression started with WebGraph, but we move our focus to the compression of social networks in a proper sense (e.g., LiveJournal): the approaches that have been used for a long time to compress web graphs rely on a specific ordering of the nodes (lexicographical URL ordering) whose extension to general social networks is not trivial. In this paper, we propose a solution that mixes clusterings and orders, and devise a new algorithm, called Layered Label Propagation, that builds on previous work on scalable clustering and can be used to reorder very large graphs (billions of nodes). Our implementation uses task decomposition to perform aggressively on multi-core architecture, making it possible to reorder graphs of more than 600 millions nodes in a few hours.Experiments performed on a wide array of web graphs and social networks show that combining the order produced by the proposed algorithm with the WebGraph compression framework provides a major increase in compression with respect to all currently known techniques, both on web graphs and on social networks. These improvements make it possible to analyse in main memory significantly larger graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.