Abstract

Despite the potential benefits of reducing system costs and improving spectral efficiency, it is challenging to implement cloud radio access network (C-RAN) systems due to the performance degradation caused by finite-capacity fronthaul links and inter-cluster interference signals. This work studies inter-cluster cooperative reception for the uplink of a two-cluster C-RAN system, where two nearby clusters interfere with each other on the uplink access channel. The radio units (RUs) of two clusters forward quantized and compressed version of the uplink received signals to the serving baseband processing units (BBUs) via finite-capacity fronthaul links. The BBUs of the clusters exchange the received fronthaul signals via finite-capacity backhaul links with the purpose of mitigating inter-cluster interference signals. Optimization of conventional cooperation scheme, in which each RU produces a single quantized signal, requires an exhaustive discrete search of exponentially increasing search size with respect to the number of RUs. To resolve this issue, we propose an improved inter-BBU, or inter-cluster, cooperation strategy based on layered compression, where each RU produces two descriptions, of which only one description is forwarded to the neighboring BBU on the backhaul links. We discuss the optimization of the proposed inter-cluster cooperation scheme, and validate the performance gains of the proposed scheme via numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.