Abstract

The direct intercalation reaction of ferrocene (bis(eta5-cyclopentadienyl)iron(II), Fc) with a highly hydrated layered zirconium phosphate (ZrP) resulted in the formation of the ferrocenium ion (Fc+) within the ZrP material. The Fc+-intercalated ZrP material has an interlayer distance of 10.7 A. The intercalated material was used as an electron acceptor for the oxidation of both ferro-cytochrome c and the excited state of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+). Upon contact of the material with a 1.5 x 10(-5) M solution of ferro-cytochrome c, the UV-vis absorption spectrum shows the successful formation of ferri-cytochrome c. Luminescence spectroscopy shows that the Fc+-intercalated ZrP material quenches the luminescence of [Ru(bpy)3]2+. The excited-state quenching mechanism of [Ru(bpy)3]2+* by Fc+-intercalated ZrP follows a dynamic plus sphere of action model. The second-order dynamic quenching rate constant kq is 2.2 x 10(8) M(-1) s(-1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call