Abstract

In this work, we initially prepared layered lithium titanate (Li2TiO3) using a solid-state reaction. Then Li+ of Li2TiO3 were acid-eluded with Hydrochloric acid to obtain hydrated titanium oxide (H2TiO3). Different weight percentages (50%, 60%, 70%, 80%, and 90%) of the as-prepared H2TiO3 were deposited on a conductive reduced graphene oxide (rGO) matrix to obtain a series of rGO/ H2TiO3 composites. Of the prepared composites, rGO/H2TiO3-60% showed excellent current density, high specific capacitance, and rapid ion diffusion. An asymmetric MCDI (membrane capacitive deionization) cell fabricated with activated carbon as the anode and rGO/H2TiO3-60% as the cathode displayed outstanding Li+ electrosorption capacity (13.67 mg g−1) with a mean removal rate of 0.40 mg g−1 min−1 in a 10 mM LiCl aqueous solution at 1.8 V. More importantly, the rGO/H2TiO3-60% composite electrode exhibited exceptional Li+ selectivity, superior cyclic stability up to 100,000 s, and a Li+ sorption capacity retention of 96.32% after 50 adsorption/desorption cycles. The excellent Li+ extraction obtained by MCDI using the rGO/H2TiO3-60% negative electrode was putatively attributed to: (i) ion exchange between Li+ and H+ of H2TiO3; (ii) the presence of narrow lattice spaces in H2TiO3 suitable for selective Li+ capture; (iii) capture of Li+ by isolated and hydrogen-bonded hydroxyl groups of H2TiO3; and (iv) enhanced interfacial contact and transfer of large numbers of Li+ ions from the electrolyte to H2TiO3 achieved by compositing H2TiO3 with a highly conductive rGO matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call