Abstract

Herein, we have synthesized a series of hexaphenylbenzene (HPB) derivatives: HPB-H, HPB-COOCH3 and HPB-COOH that differs in functional groups attached to the periphery of the outer benzene rings. Among them, the HPB with carboxyl functional group (HPB-COOH) as LIB anode shows a superior capacity of 997.4 mAh g−1 and better rate performance than HPB and HPB-COOCH3. Such superior anode properties can be attributed to the fact that HPB-COOH has a layered morphology, a pseudo-2D structure, lower LUMO energy, and higher electron conductivity, compared with that of HPB-COOCH3 and HPB-H, respectively. Moreover, low energy packing with transport channels is beneficial for Li ions diffusion during the lithiation and extraction processes. Furthermore, HPB-COOH shows excellent cycling stability presumably due to its layered molecular packing structures. Our work paves the way for the design synthesis of novel organic molecules with suitable electrochemical redox-active groups and layered hierarchical structure to achieve high capacity, good rate performance, and high cyclic stability for next generation Li ion batteries (LIBs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.