Abstract
Acrylonitrile–butadiene–styrene (ABS) resin is widely used as an important engineering thermoplastic polymer in various industrial applications, but suffers from easily burning and generating a large amount of smoke and toxic gases. Here we report a utilization of hydrotalcite-like MgA1- and ZnMgA1-layered double hydroxides (MgA1- and ZnMgA1-LDHs) as an inorganic flame retardant to ABS resin. The LDHs were prepared by a scalable method involving separate nucleation and aging steps (SNAS). The performances of the LDHs/ABS composites were evaluated by measuring limiting oxygen index (LOI), smoke density (Dm), heat release rate (HRR), and average mass loss rate (av-MLR). The results obtained show that both LDH/ABS composites exhibit higher LOI and lower Dm values, lower values of pk-HRR and av-MLR, and a prolonged combustion time, in comparison with the pristine ABS. Comparison between MgAl- and ZnMgAl-LDH-containing composites shows that the introduction of Zn2+ is able to facilitate flame retardance, smoke suppression efficiency, and tensile strength elongation rate of the ZnMgAl-LDH/ABS composite. Our results show that LDHs may be used as a type of promising inorganic flame retardant to enhance smoke suppression and flame retardant for ABS resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.