Abstract

Layered double hydroxides (LDHs) have been extensively studied as drug delivery systems due to their favorable characteristics, including biocompatibility, high loading efficiency, and pH-responsive release. However, the current research predominantly focuses on LDHs as carriers for various anionic drugs, while there are only limited reports on LDHs as carriers for hydrophobic drugs. In this study, we successfully achieved the loading of a hydrophobic drug mimic, Nile red (NR), into LDHs using sodium dodecyl sulfate (SDS) as an intermediate storage medium. Furthermore, we optimized the experimental methods and varied the SDS/NR molar ratio to optimize this intercalation system. With an increase in the SDS/NR molar ratio from 2/1 to 32/1, the loading efficiency of LDH-SDS-NR for NR initially increased from 1.32% for LDH-SDS-NR_2/1 to 4.46% for LDH-SDS-NR_8/1. Then, the loading efficiency slightly decreased to 3.64% for LDH-SDS-NR_16.8/1, but then increased again to 6.31% for LDH-SDS-NR_32/1. We believe that the established method and the obtained results in this study broaden the application scope of LDHs as delivery systems for hydrophobic drugs and contribute to the further expansion of the application scope of LDHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.