Abstract

We synthesize hierarchical WO3@NiFe-layered double hydroxide (LDH) nanoarrays via a controllable hydrothermal process to prepare WO3 nanorod arrays followed by electrochemical deposition of layer structured NiFe-LDH. The WO3@NiFe-LDH photoanodes exhibit superior photoelectrochemical water oxidation performance with lower onset potential and higher anodic photocurrent density than that of the pristine WO3 photoanode. After decorated with the ultrathin NiFe-LDH nanoflakes with optimized content, the WO3@NiFe-LDH photoanode displays negative shifted onset potential of 0.06V and enhanced photocurrent density as high as 1.10mAcm−2 at the potential of 1.20V (vs. SCE). The promising performance is attributed to that WO3 provides superior framework of photoanodes as well as the prospective light harvesting property. What’s more, the NiFe-LDH can act as an efficient oxygen evolution co-catalyst to suppress charge carriers recombination and accelerate the water oxidation kinetics. This strategy develops a fascinating cost-effective approach to promote the efficiency of water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.