Abstract
With the growing demand for clean energy, efficient uranium extraction technologies are needed, especially from seawater, where uranium reserves are huge. Here, we developed a composite membrane by inserting Escherichia coli engineered with super uranyl-binding protein (SUP) within a two-dimensional (2D) MXene (Ti3C2Tx) layer. SUP endowed the bioinorganic hybrid membrane with ultrahigh selectivity for uranyl ions, while the engineered E. coli improved the mechanical strength and economy of the membranes. Experimental results showed that the membranes achieved precise recognition of uranyl ions and excellent ion screening performance (SFU/V ≈ 43, SFNa/U ≈ 158). Excellent separation performance and cyclic stability tests demonstrated the industrial application potential of the membrane. This method offers a green and sustainable solution, combining biological engineering and nanomaterial innovation, providing an environmentally friendly and efficient approach for uranium extraction from seawater, marking a significant advancement in the field of clean energy resource development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.