Abstract

Monoalkoxy derivatives of bis(trichlorosilanes) containing methylene, ethylene, and phenylene bridges (Cl3Si–R′–SiCl2OC16H33, R′ = –CH2–, –C2H4–, –C6H4–) were synthesized and self-assembly of the amphiphilic hydrolyzed species ((HO)3Si–R′–Si(OH)2OC16H33) was investigated. Hydrolysis of all Si–Cl groups was confirmed by liquid-state 29Si and 13C NMR while the alkoxy groups were retained. The self-assembly was induced either by casting the hydrolyzed solutions on glass substrates or by cooling. The structures of the products were characterized by X-ray diffraction (XRD), electron microscopies (TEM and SEM), and solid-state 29Si and 13C NMR. The products obtained from methylene- and ethylene-bridged monomers have lamellar structures consisting of bridged polysilsesquioxane layers and all-trans hexadecanol layers, which means that alkoxy groups were cleaved during polycondensation. The large difference in the d values of these hybrids (5.84 nm and 3.40 nm) suggests the variation in the arrangement of hexadecanol molecules within the layers. In contrast, the phenylene-bridged monomer afforded a lamellar solid (d = 5.14 nm) consisting of monomeric species, where both silanol groups and alkoxy groups mostly remain intact. This is attributed to the relatively stronger interaction and hydrogen-bonding networks between hydrolyzed species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.