Abstract

Thermally robust and efficient composite ceramic phosphors (CCPs) combined both the merits of matrix and phosphor have received growing interests. However, high matrix content (e.g., Al2O3 >40 wt%) brings diluted activated ion concentration and dropped photoluminescence (PL) quantum yield (QY). Here, a novel layered array Al2O3-LuAG: Ce CCP, where Al2O3 and LuAG: Ce thin layers (10–250 µm) are alternately arranged, was presented. Owing to the special structure, thermal phonons and photons are respectively routed into Al2O3 layers and LuAG: Ce layers, which weakens the influence of Al2O3 and heat accumulation on PL properties. Consequently, it exhibits high PLQY (84.1%) and good thermal conductivity (17.1 W·m−1·K−1). When it is irradiated under high-power density (27.2 W·mm−2) blue laser, the luminous efficiency and lumen-density are promoted to 220 lm·W−1 and 5994 lm·mm−2, respectively. This work provides a promising new microstructure in developing novel phosphor converters for high-brightness laser phosphor display.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.