Abstract

Two-dimensional molecular crystals (2DMCs) open a new door for the controllable growth of 2D materials by molecular design with a energy gap and solution processability. However, the growth of 2DMCs with defined molecular layers remains full of challenges. Herein, we report a novel method to produce various 2DMCs with a defined number of molecular layers. When the surface tension and viscosity are tuned to control the spreading of the solution on the liquid surface, large-area quasi-freestanding 2DMCs from bulk size down to the monolayer limit are obtained, which makes it possible to probe the intrinsic layer-dependent optoelectronic properties of organic semiconductors down to the physical limit, and paves the way for the application of 2DMCs in new optoelectronic devices and technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.