Abstract

Spurred by research in magnetoplasmonics, plasmon-enhanced magneto-optical effects and active plasmonics, the demand for hybrid magnetic–plasmonic nanoparticle-based materials of optical quality is high. Currently used synthesis methods involve possibly interfering polymer media or polyelectrolyte interlayers, grooved supports or non-transparent substrates. To obtain homogeneous, partially transparent and polymer/polyelectrolyte-free magnetic–plasmonic nanocomposites with angle-independent optical properties, we produced hybrid gold–magnetite and silver–magnetite nanocomposites by a novel Layer-by-Layer synthesis using short bifunctional molecular linkers on glass substrates. Resulting nanocomposites had high nanoparticle filling fractions and showed tunability of the plasmon wavelength over a very broad spectral range by changing composite thickness through the number of added nanoparticle layers. The angle-independence of optical properties and the abilities to switch the plasmonic material and to tune the plasmon resonances of the magnetic–plasmonic composites make these materials a unique platform for magnetoplasmonic research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.